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Abstract: We demonstrate the reconstruction of a 3D, time-varying bolus of
radiotracer from first-pass data obtained by the dynamic SPECT imager,
FASTSPECT, built by the University of Arizona.  The object imaged is a
CardioWest Total Artificial Heart.  The bolus is entirely contained in one
ventricle and its associated inlet and outlet tubes.  The model for the
radiotracer distribution is a time-varying closed surface  parameterized by 162
vertices that are connected to make 960 triangles, with uniform intensity of
radiotracer inside. The total curvature of the surface is minimized through the
use of a weighted prior in the Bayesian framework. MAP estimates for the
vertices, interior intensity and background count level are produced for
diastolic and systolic frames, the only two frames analyzed. The strength of
the prior is determined by finding the corner of the L-curve.  The results
indicate that qualitatively pleasing results are possible even with as few as
1780 counts per time frame (total after summing over all 24 detectors).  
Quantitative estimates of ejection fraction and wall motion should be
possible if certain restrictions in the model are removed, e.g., the spatial
homogeneity of the radiotracer intensity within the volume defined by the
triangulated surface, and smoothness of the surface at the tube/ventricle join.
Ó1998 Optical Society of America
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1. Introduction

The FASTSPECT imaging system [1], developed at the University of Arizona, has been used
for first-pass tomographic imaging of the time-varying distribution of a bolus of Tc-99m
pertechnetate radiotracer infused into a CardiacWest Total Artifical Heart.  The FASTSPECT
machine simultaneously provides 24 pinhole views of the bolus distribution evolving in time,
and is unique in its ability to perform this type of dynamic imaging.  The goal in obtaining
first-pass tomographic data is to demonstrate that clinically important measures of heart
function, such as ejection fraction and wall motion, can be quantitatively estimated without
having to gate and average over many cardiac cycles, an approach necessarily utilized by
single- or dual-head cardiac SPECT systems.  If ejection fraction and wall motion can be
estimated from first-pass data during the first few cardiac cycles, then later cycles can be used
to estimate myocardial perfusion, another important indicator of heart function. If successful,
the FASTSPECT approach would mean that a single, relatively cheap instrument could
perform multiple diagnostic tests of cardiac function with a single bolus of radiotracer.  This
type of capability would be clinically valuable and affordable for use in emergency rooms
across the country to do initial assessment of cardiac patients.

A traditional approach to reconstruction of the 24-view tomographic data might
employ the EM method to produce the maximum likelihood estimate of the activity in each
voxel of the volume being imaged.  A voxel-based reconstruction can be further processed by
manual or automated segmentation to yield an estimate of an isosurface of the radiotracer
distribution.  If the radiotracer distribution is homogeneously mixed throughout a ventricular
chamber of interest, then the time-sequenced estimated isosurface yields an estimate of the
ventricular volume as a function of time, and hence ejection fraction, but it also provides a
great deal more information of potential clinical value, since the entire interior surface of the
ventricle is revealed.  It is the dynamic information about the interior surface of the ventricle
that distinguishes FASTSPECT and its potential follow-up (a clinical device) from other
cardiac SPECT implementations, wherein time-averaging over different cardiac cycles is
needed to provide similar information.

The principal attraction of the traditional approach to tomographic reconstruction and
segmentation is that it is fast, and provides nearly optimal solutions when used in medical
imaging modalities, e.g., PET and MRI, where the number of views and SNR are quite high.
However, for data with very low SNR and including only a limited number of views, the
traditional approach will perform very poorly at estimating the surface that defines the spatial
extent of the radiotracer distribution.  This is due to the fact that the non-parametric, voxel-
based model used in the tomographic reconstruction is underconstrained.  Surface estimates
performed in this way will be unacceptably noisy for the type of data analyzed in this article.
For such sparse and noisy data, an approach that  directly estimates the shape parameters of a
time-varying surface from the raw projection data is advantageous, although potentially very
time-consuming.

We discuss the direct estimation approach in this article and apply it for the first time
to real data obtained by FASTSPECT. We formulate a Bayesian estimation problem for first-
pass tomographic imaging using FASTSPECT that directly estimates the time-varying
(x,y,z) components of the vertices of a triangulated surface within which it is assumed the
bolus is uniformly distributed [2-6].  The estimation is performed by doing a quasi-Newton
minimization of the minus-log posterior over a 486-dimensional parameter space. The
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computation time associated with our direct estimation approach is comparable to the time
required by the traditional approach, due to the fact that we utilize the adjoint differentiation
technique to compute search directions needed by the optimization.  

First, we describe the FASTSPECT imaging system and the real data that were
analyzed.  Next we formulate the Bayesian estimation problem and, finally, we present some
results and conclusions.

2. The data

2.1  FASTSPECT

FASTSPECT is a dynamic SPECT imager that has been used for brain, heart and bone
imaging [1].  Two circular arrays with a total of 24 pinhole apertures are arranged on a
hemispherical dome that is roughly 35 cm in diameter.  The hemisphere surrounds the
volume of interest.  Each pinhole is mapped to an Anger detector, and the voltages from the 4
photomultipliers that see a monolithic scintillating crystal for each detector are converted to an
estimate of the position of each detected photon that must lie on a 64x64 uniformly-binned
image grid. If a reliable estimate of the position of a photon cannot be determined, then the
photon hit is discarded.  There is no explicit windowing in energy to discriminate against
scattered photons.  This detection system may eventually be replaced by a semiconductor-
based system [7].  

Pinholes of various diameter can be inserted into the dome surrounding the object
volume; 2.5 mm diameter pinholes were used to generate the data analyzed in this article.
The system is characterized by a matrix, H, that is measured by passing a small volume
element of radiotracer throughout the volume being imaged, and measuring the response of
every detector pixel to that source, producing an enormous amount of information, even when
compressed to take advantage of the sparsity of the matrix (150 MB of disk space after
compression).  The system matrix used in this article was obtained by passing a [5mm]3

volume element through a 43x57x39 grid.  The system matrix is noisy since only a finite
number of counts are obtained for each location of the source. Given enough patience and time,
though, this noise could presumably be made as low as is needed.  

Note that attenuation through the dome is included in the measurement of H.  If
information is available concerning attenuating material between the radiotracer distribution
and the pinholes, it can also be incorporated into H, and this was done for the H used to
analyze the data discussed in this article.  A phantom was defined, using simple geometric
shapes, that approximately characterizes the torso surrounding the artificial heart system
described in the next section.  The geometric shapes used to simulate the lungs were assigned
an attenuation length of 0.07 cm-1 and the geometric shapes used to simulate the rest of the
system were assigned an attenuation length of 0.15 cm-1 (the attenuation length of water at 140
keV).  For each (object voxel, pinhole center) pair, the exponential attenuation e-(0.15*L1+0.07*L2)

was computed, where L1=distance in cm along the line connecting the object voxel to the
pinhole center which passes through the water, and L2=distance in cm along the same line
which passes through the simulated lung material.  The attenuation factor was multiplied by
the H entries for that voxel and all of the detector pixels associated with that pinhole to
produce new H entries.

2.2  The imaged object and raw data

The object that was imaged is a CardioWest Total Artificial Heart.  Only the left and right
ventricles, each about 120 ml in volume, were used.  The lungs were simulated using bottles
filled with water and styrofoam beads.  A 20 mCi  bolus of Tc-99m pertechnetate was injected
into the input tube of the right ventricle at a site outside the field of view about 17 cm from
the input valve of the right ventricle.  The 20 mCi is first placed into 0.5 mL of a syringe and
injected into a very small tube that leads to the input tube of the right ventricle.  The bolus is
eventually ÒflushedÓ into the input tube using a volume of water that is greater than the
volume enclosed by the small tube.  This process is thought to parallel the method of
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injection for humans, in which the injection is followed by a saline flush. Ultimately, the fluid
flows into and out of a Donovan mock circulatory system, which is out of the field of view.  

First-pass diastolic and systolic frames were analyzed. The diastolic frame (Fig. 1a)
contained a total of 2133 counts, of which about 40 appear to be inconsistent with the
assumption that the radiotracer distribution is contained within the right ventricle and its
associated input and output tubes.   We assume that these counts are from photons that were
scattered but still accepted, although other explanations may be possible.  We refer to these
counts as ÒbackgroundÓ counts, and will later model and estimate  this background as a
single constant, different in value for each time frame, but the same for all detector pixels at a
given time.  The systolic frame (Fig. 1c) contained a total of 1780 counts, with a similar
number  of background counts.

             a)                        b)                        c)                        d)
Fig. 1.  Raw data for a) diastolic frame and c) systolic frame.  Predicted detector Poisson
rates for b) diastolic frame and d) systolic frame using MAP solution with a=0.2.

3. The Bayesian estimation problem

We have implemented a general tool for Bayesian estimation in the context of image analysis
using geometric models that we call the Bayes Inference Engine (BIE).  We conceive of the
Bayesian estimation problem as consisting of three parts: the object model, the measurement
model, and the probability model.  In the BIE, the user constructs a graphical program that
transforms object and measurement system parameters into predicted data.  The predicted data
are compared with real data to produce a minus-log-probabilistic goal function, and an
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optimizer is connected to the goal function and any parameters that are to be estimated by
minimizing the goal function.  See Fig. 2 for the graphical program that was used to analyze
the data discussed in this article.

x

f Hf

IHf
g

I
s

k

Fig. 2.  BIE canvas used to analyze SPECT data.  The triangulated surface box at the far left
contains x.  It is transformed into a voxellated grid, f, and then by the matrix, H, to produce
Hf(x).  Finally it is multplied by the intensity, I, and the additive background constant, s, is
added, to produce the predicted detector pixel rates g=IHf(x)+s.

3.1  The object model

The object model is the  parametric model of whatever spatio-temporal physical quantity we
are interested in; in this case, it is the parametric model for the 3D, time-varying, radiotracer
intensity distribution.  In the BIE, we always convert parametric models to non-parametric
ones (uniformly sampled grids) so that complex models can easily be built through
combination of parametric  models after conversion to a non-parametric form.  

The parameteric model we use here is a triangulated surface that evolves in time,
defined by a set of 162 vertices with (x,y,z) components, and a connectivity network that
creates 960 triangles by connecting vertices together.  The 486-point vector that lists the
(x,y,z) components for each of the 162 vertices is denoted x. All 486 values in x are estimated
for each time. This parametric model is converted to a non-parametric uniformly-voxellated
grid, f, by setting the value of each voxel in f to the fraction of that voxel that is contained
within the volume described by the triangulated surface.  We assume that the radiotracer is
homogeneously distributed throughout the volume enclosed by the triangulated surface, so
that only a single parameter, I, is needed for the activity level.  Thus, If is a uniformly-
voxellated grid with intensity I interior to the triangulated surface defined by the vertices x .
Obviously, f is functionally dependent on the parameters, f=f(x).  

More complicated models for the 3D distribution within the volume defined by the
surface can be accomodated in the BIE,  e.g., a voxellated grid of values with lower and upper
bounds or an unconstrained voxellated grid with an associated prior penalizing high-frequency
variations could be used.

Many alternative geometric models have been used in medical imaging, including
implicitly-defined surfaces, snakes, and line processes.  Implicitly-defined surfaces are ideal in
situations where the topology of the surface is unknown, which is not the case here since we
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expect the volume containing radiotracer to be path-connected (except perhaps at the valves).
Similarly, reconstruction using line processes can produce disconnected lines rather than
polygons, and there are issues regarding convergence to the global minimum.   ÒSnakesÓ and
surface snakes have been used in medical imaging, and in other situations, to segment image
or volume data.  The segmentation step is often preceded by a non-parametric tomographic
reconstruction technique, e.g., EM or filtered backprojection, to transform the data from
projection space to object space.  The spatial derivative of the reconstructed image or volume
is interpreted as a force that acts on the geometrical model, driving it toward spatial locations
of maximum image gradient (edges).  The approach adopted in this article can be formulated
as a surface snake problem if the forces on the surface snake are defined to be equal to the
gradient of the minus-log posterior (defined below) w.r.t. the surface parameters [8].  However,
even if this is done, the update equation for snakes is to simply step in the direction of the
ÒforceÓ (gradient) at each iteration.  This yields an optimization algorithm that is essentially
gradient descent, which is much slower than the quasi-Newton approach we use.

3.2 The measurement model

The measurement model uses as input the nonparametric version of the object model, If, and
produces a set of predicted data elements, g, in this case a Poisson rate for each detector pixel.
The measurement model might, in general, contain many components.  For example, in an x-
ray radiographic system, one would expect to have line integral transformations (parallel- or
divergent-beam), convolutions, exponential point transforms, etc.  

For the FASTSPECT machine, though, the measurement model is merely the very
large matrix, H, along with a single additive constant that models the background (the same
background constant is used for all 24 detectors), so that g=IHf+s. The background, s, must
be jointly estimated from the data along with the object model parameters.  Much more
complicated 2D spatial field models exist within the BIE, but the very low number of
background counts probably make more complex models impossible to estimate well.  One
extension that is worth investigating is a different background constant for each detector that
varies in time in a plausible way.

The nature of our object model allows us to speed up the calculation Hf dramatically
since only a few percent of the voxels in the object model are nonzero.  Simply skipping over
Hf for values of f that are zero allows us to calculate Hf in about 300 msec on a DEC Alpha
500/500.  The same speedup applies in the adjoint direction, wherein derivatives are
propagated according to the chain rule in the direction opposite to the path that transforms
object parameters into predicted data [9].

3.3  The probability model

The probability model for the object penalizes a discrete approximation to the local curvature
at every edge shared by two triangles on the surface in order to enforce smoothness of the
estimated surface.  Let n i be the normal to the ith triangle.  We define qij to be the angle
between ni and nj. Then, if Ai is the area of the ith triangle, and lij is 1/3 the height of the ith

triangle relative to the edge shared by triangles i and j, the curvature prior is defined as

p (x)  =  SiAi(Sj[tan(qij/2)/ lij]
2),           (1)

where x  is the list of (x,y,z) components for each of the 162 vertices, i indexes over all
triangles on the surface and j indexes over all triangles that share an edge with the ith triangle.

The form in (1) is slightly different from the form used during our first attempts to
analyze simulated FASTSPECT data [5,6].  First, the tangent-squared term in (1) is divided
by a length over which it is assumed that half the angular difference occurred [10].  As the
angle gets small, the total term looks like an angular velocity w.r.t. arclength, which is the
definition of curvature for a curve.  Note that this term is not symmetric in the vertices of
triangles i and j, and that we did not use a simpler definition for lij that calculates the distance
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from the midpoint of one triangle to the midpoint of the shared edge.  These subtleties are
intentional, and may be important in keeping the triangulation evenly distributed on the
surface during  the course of the gradient-based optimization so that no remeshing of the
surface is needed.  Second, the total surface area no longer appears in the denominator in (1).
This is also intentional since such a term would make the prior favor surfaces with larger total
area (with the new numerator definition).  

The definition in (1) is invariant to isotropic scale changes in the object and also to
the number of triangles used in the discrete representation of the surface, as long as the angles
are small.  This could be an important feature if re-meshing is needed, since one can easily re-
mesh to a new set of triangles that does not affect the value of the prior, if all of the angles are
small.

The probability model for the likelihood is the Poisson distribution with mean value
equal to the predicted data  (predicted detector pixel Poisson rates, g=IHf(x)+s) and count
values equal to the raw data:

f (x,I,s)  =  -ln Prob[data | predicted data]
 = Si [-ki ln gi +gi ],               (2)

where we have ignored terms in (2) that depend only on the data k.  The dependence of the
predicted data g on the underlying parameters x, I, and s, is understood.  Note that because
the background constant in the measurement model is additive, the predicted detector pixel
rates g can never be equal to or less than zero as long as the activity level and background
level are greater than or equal to zero, which makes the form in (2) well-defined, and makes
the derivative of f(x,I,s) w.r.t. g (and ultimately x) well-behaved.

3.4  The estimation problem

The Bayesian estimation problem is to find the values for the object model parameters, x, that
produce the maximum a posteriori (MAP) probability, or the minimum minus-log posterior:

xMAP(a) = arg minx [f(x,I,s)+ ap (x)],           (3)

for some fixed value of the hyperparameter, a.  The higher-order problem is to determine the
value of a from the data. The Bayesian solution to the higher-order problem is to determine
the a  that yields the greatest evidence for the data, where the evidence is the integral w.r.t.
parameters over the joint posterior distribution of parameters and data (leaving just the
probability of the data, called the evidence) [10].  However, evaluation of the evidence is
computationally nontrivial, so for now we use an alternative, heuristic approach.  

We determine a using the L-curve [11], the continuum of 2D points,

(f(xMAP(a)), p(xMAP(a))),                (4)

parameterized by a.  The L-curve approach is traditionally used for linear least-squares with
quadratic regularization, but, to the degree that the minus-log posterior is quadratic, an L-
curve approach should be reasonable.  

The value of a chosen for the final estimate is the one that yields the point on the L-
curve that is closest to the ÒcornerÓ.  For very large values of a , the MAP solution is over-
regularized.  As a  decreases, much better fits to the data are allowed (decreasing minus-log
likelihood) at very little cost to the prior.  This is the vertical line part of the L-curve (Fig. 3).
For small values of a, the MAP solution is under-regularized, and the data is well-fit (small
value of minus-log likelihood).  Now, very large increases in the minus-log prior are needed
to allow sufficient freedom in the model so that any decrease in the minus-log likelihood can
result.  This is the horizontal line part of the L-curve (Fig. 3).  Obviously, weÕd like to
choose an a  that is somewhere between these two extremes, thus the ÒcornerÓ criterion.  A
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value of a=0.2 produces a point on the L-curve that is approximately halfway between the
endpoints of the two extreme regions just described and yields a qualitatively pleasing result.

a=3.2

a=0.8

a=0.2

a=0.1 a=0.05

Fig. 3.  The L-curve for the diastolic frame.

Since we have no prior information regarding the activity level, I, within the heart, or
the background level, s, on the detectors, we simply find the maximum likelihood estimates
of those parameters,  IML(a) = arg minI [f(x,I,s)], and sML(a) = arg mins [f(x,I,s)].

4. Results

The MAP solutions for a range of a using the data in Fig. 1a (diastolic frame) are shown in
Fig. 4.  As discussed above, large values of a produce over-regularized MAP solutions, while
small values of a produce under-regularized, noisy solutions.  The MAP solution using a =
0.2 is chosen as the ÒbestÓ MAP estimate.  This value of a was also used to find the MAP
solution for the data in Fig. 1c (systolic frame).  

      
        a)              b)                   c)

Fig. 4.  MAP reconstructions of the bolus boundary surface using a) a=3.2, b)  a=0.2,  and c) a=0.1.

Comparison between the MAP reconstructions of the bolus boundary for the diastolic
and systolic frames (see Figs. 5 and 6) shows the type of behavior that we expect in most
regions. The inlet tube shows very little change in distribution between diastolic and systolic
frames presumably because the valve that regulates flow between the tube and the ventricle is
closed during that time (Figs. 5a-b and 6a-d, top tube).  The diaphragm at the bottom of the
ventricle moves toward the inlet and outlet tubes, as expected, causing the ventricular volume
to decrease in that region (Figs. 5a and 6d-e, right side).  The bolus boundary expands along
the direction of blood flow through the outlet tube (Figs. 5b and 6b-f, bottom tube).
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        a )  b)

Fig. 5.  Comparison between diastolic and systolic frame reconstructions: a) diastolic frame is
wireframe and systolic frame is solid surface, b) diastolic frame is solid surface and systolic
frame is wireframe.  See http://planck.lanl.gov/~cunning/3D for an interactive Java display of
the reconstructions.

a)                       b)                           c)                            d)                           e)                            f)
Fig. 6.  Cut planes through the reconstructions in Fig. 5.  Red lines are for diastolic frame and
green lines are for systolic frame. Z-slices are a) -8 mm, b) -4 mm, c) 0 mm, d) 4 mm, e) 8
mm,  and f) 12 mm.

5. Discussion

There are several features of the reconstructions that require further investigation.  The bolus
boundary appears to expand rather than contract within the ventricular volume on the side
closest to the outlet tube during the transition from diastoli to systoli (Figs. 5b and 6f,
bottom right).  This feature tends to make the apparent ventricular volume increase in that
region from diastoli to systoli, rather than decrease.  This problem could be due to
inhomogeneity in the mixing of the radiotracer.  If the inhomogeneity is not severe, then
simple low-frequency models for the spatial distribution of the radiotracer within the volume
defined by the closed surface might be able to eliminate this feature and result in a surface
estimate at systoli  that is nearer to the ventricular wall.  

Another puzzling feature of the reconstructions is the ring connecting the two tubes
that lies on top of one side of the ventricle (Fig. 4b, back surface of ventricle between the two
tubes).  This feature may be an artifact of the curvature prior since there is a high-curvature
region that connects the tubes to the ventricles whose true configuration may be disallowed by
the prior.  This feature might be eliminated if the curvature prior is de-weighted at the join
between tube and ventricle, allowing a ÒkinkÓ to develop at the join [10].  Until these features
are eliminated, an estimate of the time-varying volume and ejection fraction using the model
proposed in this article would underestimate the quantitative accuracy achievable by a more
capable model applied to the same data, and so it is not attempted.

6. Conclusion

We have formulated the analysis of very low-count, first-pass cardiac SPECT data in a
Bayesian framework using deformable geometric models.  In particular, the model assumes
that the radiotracer distribution within the tubes and ventricle is uniformly distributed inside a
volume defined by a closed, triangulated surface with 162 vertices and 960 triangles.  We
jointly estimate the intensity of the distribution as well as the positions of the vertices of the
surface from the raw data.  The optimization process takes, on a DEC Alpha 500/500 (500
MB memory, 500 MHz processor), 10-15 minutes per frame after the first frame has been
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analyzed, approximately the time required to complete 20-30 iterations of ML-EM if the full
H matrix is applied at each iteration.

We use the system matrix for FASTSPECT and an unknown constant additive
background to model the predicted rates at the detector as a function of volumetric
distributions of radiotracer parameterized by the surface.  The system matrix and raw data were
provided to us by the University of Arizona.  The raw data consist of 24 pinhole views of the
radiotracer intensity distribution at diastoli and systoli.  The total number of counts,
integrated over all 24 detectors, is 2133 at diastoli and 1780 at systoli.

The results are qualitatively quite pleasing, and one can conceive of a number of
extensions to the model that will only improve the performance of the approach, e.g., surface
ÒkinksÓ, 3D low-frequency spatial variation of the radiotracer distribution within the volume
defined by the closed surface,  and truly time-evolving models for the radiotracer distribution
which utilize priors on the spatio-temporal nature of the surface velocity field. These
extensions should help eliminate the few undesirable features of the current reconstructions that
prevent us from producing highly quantitative estimates of ventricular volume and wall
motion at this time.
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